THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2060B Mathematical Analysis II (Spring 2017)

Tutorial 3

Tongou Yang

1. Prove the L'Hospital's Rule in the case $\frac{\infty}{\infty}$.
2. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is everywhere smooth.
(a) State the Taylor's theorem.
(b) Using Taylor's theorem, show again that

$$
\lim _{t \rightarrow 0} \frac{f(x+t)+f(x-t)-2 f(x)}{t^{2}}=f^{\prime \prime}(x)
$$

(c) Show again that $\cos (x)>1-\frac{x^{2}}{2}$ for all $x>0$.
(d) Consider the function e^{x}. Show that for each real number x, we have:

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!}=e^{x}
$$

The above is an example of a Taylor series. We will return to this at the end of the term.
3. (Convexity) Let $f:(a, b) \rightarrow \mathbb{R}$. To make things simple we assume f is smooth.
(a) State the definition of f being convex on (a, b).
(b) Suppose f is smooth. Then f is convex on (a, b) if and only if $f^{\prime \prime}(x) \geq 0$ on (a, b).
(c) Fix $c \in(a, b)$. Consider the function $g:(c, b) \rightarrow \mathbb{R}$:

$$
g(x):=\frac{f(x)-f(c)}{x-c}
$$

Show that f is convex if and only if the above function g is increasing.

Show that if f is convex, then g is increasing. (Can you come up with a counterexample to the converse?)
The following is true instead:
Let $c<x<y<b$. Then:

$$
\frac{f(x)-f(c)}{x-c} \leq \frac{f(y)-f(x)}{y-x}
$$

See if you can prove it.
(d) (Optional) Let $f:(a, b) \rightarrow \mathbb{R}$ satisfy the "midpoint convexity": for all $a<x<$ $y<b$,

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}
$$

Show that if f is continuous, then a midpoint convex function is convex.
4. (a) Show that the function $f(x):=x^{p}$ for $x \geq 0$ is convex if $p \geq 1$.
(b) Show again that we have the following inequality: For $x, y>0, p \geq 1$,

$$
(x+y)^{p} \leq 2^{p-1}\left(x^{p}+y^{p}\right)
$$

(c) Show by convexity that Young's inequality is true:

Let a, b be two positive numbers and $p, q>1$ be two real numbers satisfying $\frac{1}{p}+\frac{1}{q}=1$. Show that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Hint: Consider the function $\phi(x):=e^{x}$. Show that ϕ is convex, and let $\lambda:=\frac{1}{p}$, whence $1-\lambda=\frac{1}{q}$.

